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Abstract

Using Moser’s iteration method, we investigate the problem of removable isolated
singularities for elliptic equations with p(x)-type nonstandard growth. We give a sufficient
condition for removability of singularity for the equations in the framework of variable
exponent Sobolev spaces.
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1 Introduction

In recent years, the research of elliptic equations with variable exponent growth conditions
has been an interesting topic. These problems possess very complicated nonlinearities, for in-
stance, the p(x)-Laplacian operator −div(|∇u|p(x)−2∇u) is inhomogeneous, and these problems
have many important applications, see [1, 2, 3]. Since Kováčik and Rákosńık first studied the
Lp(x) spaces and W k,p(x) spaces in [4], many results have been obtained concerning these kinds
of variable exponent spaces, see examples in [5− 12].

In this paper, we study solutions to nonlinear elliptic equations with nonstandard growth
in the divergence form

−divA(x, u,∇u) + g(x, u) = 0. (1.1)

in a punctured domain Ω \ {0}, where Ω ⊂ RN is a bounded domain with smooth boundary.
Throughout the paper we suppose that the functions A(·, ξ, η) : Ω × R × RN → RN ,

g(·, ξ) : Ω×R→ RN are measurable for all ξ ∈ R, η ∈ RN , and A(x, ·, ·), g(x, ·) are continuous
for almost all x ∈ Ω. We also assume that the following structure conditions

A(x, ξ, η)η ≥ µ1|η|p(x), (1.2)
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|A(x, ξ, η)| ≤ µ2|η|p(x)−1, (1.3)

A(x, ξ,−η) = −A(x, ξ, η) (1.4)

|x|−α|ξ|q(x) ≤ g(x, ξ)sgnξ ≤ C|x|−α|ξ|q(x) (1.5)

are fulfilled for almost all x ∈ Ω, ξ ∈ R, η ∈ RN , where µ1, µ2 > 0, α < N,C > 1 are constants,
p, q ∈ C(Ω), 1 < p− ≤ p(x) ≤ p+ < N , and q(x)� p(x)− 1.

Here we denote
p− = inf

x∈Ω
p(x), p+ = sup

x∈Ω

p(x),

and denote by q(x)� p(x)− 1 the fact that infx∈Ω(q(x)− p(x) + 1) > 0.
For the Laplace’s equation, a set of capacity zero constitutes a removable singularity for a

bounded harmonic function, while, a single point x0 is removable if the solution is o(log|x−x0|)
or o(|x− x0|2−N).

Serrin [13] considered the conditions of removability of an isolated singular point for equation
(1.1) in the case of g(x, u) ≡ 0, it is shown that at an isolated singularity a positive solution

has precisely the order of growth |x− x0|
p−N
p−1 if 1 < p < N, or log 1

|x−x0| if p = N .

Brezis and Veron [14] studied the equation of form (1.1) with a Laplace operator in the prin-
cipal part. They proved the removability of isolated singularities for solutions under condition
g(x, ξ)sgnξ ≥ |ξ|q and q ≥ N

N−2
, N ≥ 3.

For the equation of the form:

−divA(x, u,∇u) + a0(x, u,∇u) = 0

Serrin [13, 15] considered the conditions of removability of an isolated singular point x0, the
condition has the form

u(x) = o
(
|x− x0|

p−N
p−1

+τ
)
, 1 < p < N,

with positive number τ . Nicolosi et al. [16] obtained a precise condition for the removability
of singularities, it has the form

u(x) = o
(
|x− x0|

p−N
p−1

)
, 1 < p < N.

For equations with weighted functions v, w, Mamedov and Harman [17] proved that an
isolated singular point x0 is removable for solutions of equation (1.1) if the condition of weighted
functions

v(B(x0, ε))

(
w(B(x0, ε))

εpv(B(x0, ε))

) q
q−p+1

= o(1), ε→ 0,

and p > 1, q > p − 1 are fulfilled. For the removability of singularities for solutions of elliptic
equations with absorption term (see [18, 19]).
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Recently, there have been a few papers on the study of the removability of singularities
for the equations with nonstandard growth. Lukkari [20] investigated the removability of a
compact set for the equation −div

(
|Du|p(x)−2Du

)
= 0. For the anisotropic elliptic equation,

the removability of a compact set was proved by Cianci [21]. Cataldo and Cianci [22] considered
the conditions of removability of an isolated singular point for equation (1.1) in the case of
g(x, u) = |u|q−2u.

In this paper, following Moser’s method [23], we establish the condition

1 <
(p(x)− α)q(x)

q(x)− p(x) + 1
+ α� N a.e. on Ω (1.6)

to ensure the removability of singularities.

2 Preliminaries

We first recall some facts on spaces Lp(x) and W k,p(x). For the details see [4, 8].
Let P(Ω) be the set of all Lebesgue measurable functions p : Ω→ [1,∞], we denote

ρp(x)(u) =

∫
Ω\Ω∞

|u|p(x) dx+ sup
x∈Ω∞

|u(x)|,

where Ω∞ = {x ∈ Ω : p(x) =∞}.
The variable exponent Lebesgue space Lp(x)(Ω) is the class of all functions u such that

ρp(x)(tu) <∞, for some t > 0. Lp(x)(Ω) is a Banach space equipped with the norm

‖u‖Lp(x) = inf{λ > 0 : ρp(x)

(u
λ

)
≤ 1}.

For any p ∈ P(Ω), we define the conjugate function p′(x) as

p′(x) =


∞, x ∈ Ω1 = {x ∈ Ω : p(x) = 1},
1, x ∈ Ω∞,
p(x)
p(x)−1

, x ∈ Ω \ (Ω1 ∪ Ω∞).

Theorem 2.1 Let p ∈ P(Ω). For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω),∫
Ω

|uv| dx ≤ 2‖u‖Lp(x)‖v‖Lp′(x) .

Theorem 2.2 Let p ∈ P(Ω) with p+ <∞. For any u ∈ Lp(x)(Ω), we have

(1) if ‖u‖Lp(x) ≥ 1, then ‖u‖p
−

Lp(x)
≤
∫

Ω
|u|p(x) dx ≤ ‖u‖p

+

Lp(x)
;
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(2) if ‖u‖Lp(x) < 1, then ‖u‖p
+

Lp(x)
≤
∫

Ω
|u|p(x) dx ≤ ‖u‖p

−

Lp(x)
.

The variable exponent Sobolev space W 1,p(x)(Ω) is the class of all functions u ∈ Lp(x)(Ω)
such that |∇u| ∈ Lp(x)(Ω). W 1,p(x)(Ω) is a Banach space equipped with the norm

‖u‖W 1,p(x) = ‖u‖Lp(x) + ‖∇u‖Lp(x) .

We say that the function u(x) belongs to the space W
1,p(x)
loc (Ω) if u(x) belongs to W 1,p(x)(G) in

any subdomain G, G ⊂ Ω.

Theorem 2.3 For any u ∈ W 1,p(x)(Ω), we have

(1) if ‖u‖W 1,p(x) ≥ 1, then ‖u‖p
−

W 1,p(x) ≤
∫

Ω
(|∇u|p(x) + |u|p(x)) dx ≤ ‖u‖p

+

W 1,p(x) ;

(2) if ‖u‖W 1,p(x) < 1, then ‖u‖p
+

W 1,p(x) ≤
∫

Ω
(|∇u|p(x) + |u|p(x)) dx ≤ ‖u‖p

−

W 1,p(x).

From Zhikov [5, 6], we know smooth functions are not dense in W 1,p(x)(Ω) without additional
assumptions on the exponent p(x). To study the Lavrentiev phenomenon, he considered the
following log-Hölder continuous condition

|p(x)− p(y)| ≤ C

−log(|x− y|)
(2.1)

for all x, y ∈ Ω such that |x − y| ≤ 1
2
. If the log-Hölder continuous condition holds, then

smooth functions are dense in W 1,p(x)(Ω) and we can define the Sobolev spaces with zero

boundary values W
1,p(x)
0 (Ω), as the closure of C∞0 (Ω) with the norm of ‖ · ‖W 1,p(x)(Ω).

Theorem 2.4 If u ∈ W 1,p
0 (BR(a)), 1 ≤ p < N , then for any 1 ≤ q ≤ p∗, the inequality(∫

BR(a)

|u|qdx
) 1

q

≤ C(N, p)R1+N
q
−N
p

(∫
BR(0)

|Du|pdx
) 1

p

(2.2)

is valid, where BR(a) is the ball of radius R with centre a.

We define p+
δ = sup

y∈Bδ(0)∩Ω

p(y), p−δ = inf
y∈Bδ(0)∩Ω

p(y), q+
δ = sup

y∈Bδ(0)∩Ω

q(y), q−δ = inf
y∈Bδ(0)∩Ω

q(y),

where δ > 0 is a constant.

Lemma 2.1 Since q(x) � p(x) − 1, then the set S = {δ : p+
δ − 1 < q−δ } is nonempty,

bounded above and δ0 = sup{δ : p+
δ − 1 < q−δ } < +∞.
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Proof. As q(x), p(x) are continuous on Ω, for ε1 ∈ (0, 1) and 0 ∈ Ω, there exists δ > 0
such that |q(0)− q(y)| < ε1 and |p(0)− p(y)| < ε1 whenever |y| < δ. For any y ∈ Bδ(0)∩Ω, we
have

p(y)− 1 < p(0)− 1 + ε1,

and
q(y) > q(0)− ε1.

As q(x)� p(x)− 1, take ε1 = 1
4

inf
x∈Ω

(q(x)− p(x) + 1),

q(0)− ε1 − (p(0)− 1 + ε1) ≥ 1

2
inf
x∈Ω

(q(0)− p(0) + 1) > 0,

then
p(y)− 1 < p(0)− 1 + ε1 < q(0)− ε1 < q(y),

and further
p+
δ − 1 = sup

y∈Bδ(0)∩Ω

(p(y)− 1) < q−δ = inf
y∈Bδ(0)∩Ω

q(y).

So the set S = {δ : p+
δ − 1 < q−δ } is nonempty. From the definition of the q(x) � p(x) − 1,

we know the set S is bounded above. By the Continuum Property, it has a smallest upper
bound δ0. This smallest upper bound δ0 is called the supremum of the set S. We write
δ0 = supS = sup{δ : p+

δ − 1 < q−δ }.
Consider a solution u(x) of equation (1.1) with an isolated singularity. Assume that 0 ∈ Ω

and zero is a singular point of the solution u(x). We say that u(x) is a solution of equation (1.1)

in Ω \ {0} if u ∈ W 1,p(x)(Ω \ {0}) and for any test function ϕ ∈ W 1,p(x)
0 (Ω \ {0}) ∩ L∞(Ω \ {0})

in Ω \ {0}, the following equality is true:∫
Ω

(A(x, u,∇u)∇ϕ+ g(x, u)ϕ) dx = 0. (2.3)

We say that the solution u(x) of equation (1.1) has a removable singularity at the point 0
if the function u(x) is a solution in Ω \ {0} and u ∈ W 1,p(x)(Ω \ {0}) ∩ L∞(Ω \ {0}) implies
that it belongs to the space W 1,p(x)(Ω) ∩ L∞(Ω) and satisfies (2.3) for any test function ϕ ∈
W

1,p(x)
0 (Ω) ∩ L∞(Ω).

3 Proof of theorems

In this section we state and prove the following theorems.
In the sequel by C we denote a constant, the value of which may vary from line to line.
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Theorem 3.1 Let u ∈ W 1,p(x)(Ω \ {0}) ∩ L∞(Ω \ {0}) be a solution of equation (1.1) in
Ω \ {0}. Assume that conditions (1.2)− (1.5), (2.1) are satisfied. Then for any 0 < |x| ≤ R <
min{dist(0, ∂Ω), δ0, 1}, the estimate

|u(x)| ≤ C|x|−Q, (3.1)

holds almost everywhere, where Q = Q(N,α, p−R, p
+
R, q

−
R) and C = C(N,µ1, µ2, p

−
R, p

+
R, q

−
R , q

+
R , R).

Proof. For ρ < R we define a smooth cut-off function ϕ1(x) satisfying conditions: ϕ1(x) = 1
for ρ

2
< |x| < 3ρ

4
, ϕ1(x) = 0 outside the set for ρ

4
≤ |x| ≤ ρ, |∇ϕ1(x)| ≤ C

ρ
and 0 ≤ ϕ1(x) ≤ 1.

Take the test function

ψ(x) = (1 + |u(x)|)mu(x)ϕ1(x)n+p+R ∈ W 1,p(x)
0 (BR(0)\{0}),

m, n ≥ 0 are nonnegative numbers to be determined later, and then

∇ψ(x) = m(1 + |u(x)|)m−1∇u(x)|u(x)|ϕ1(x)n+p+R + (1 + |u(x)|)m∇u(x)ϕ1(x)n+p+R

+ (1 + |u(x)|)mu(x)(n+ p+
R)ϕ1(x)n+p+R−1∇ϕ1(x).

We substitute the test function ψ(x) into the integral identity (2.3), we obtain∫
BR(0)

mA(x, u,∇u)(1 + |u(x)|)m−1∇u(x)|u(x)|ϕ1(x)n+p+Rdx

+

∫
BR(0)

A(x, u,∇u)(1 + |u(x)|)m∇u(x)ϕ1(x)n+p+Rdx

+

∫
BR(0)

g(x, u)(1 + |u(x)|)mu(x)ϕ1(x)n+p+Rdx

+

∫
BR(0)

A(x, u,∇u)(1 + |u(x)|)mu(x)(n+ p+
R)ϕ1(x)n+p+R−1∇ϕ1(x)dx = 0.

By virtue of the conditions (1.2)− (1.5),∫
BR(0)

µ1m|∇u(x)|p(x)(1 + |u(x)|)m−1|u(x)|ϕ1(x)n+p+Rdx

+

∫
BR(0)

µ1|∇u(x)|p(x)(1 + |u(x)|)mϕ1(x)n+p+Rdx

+

∫
BR(0)

|x|−α|u(x)|q(x)+1(1 + |u(x)|)mϕ1(x)n+p+Rdx

≤
∫
BR(0)

µ2(n+ p+
R)|∇u(x)|p(x)−1(1 + |u(x)|)m+1ϕ1(x)n+p+R−1|∇ϕ1(x)|dx,
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and using Young’s inequality, we have∫
BR(0)

µ1|∇u(x)|p(x) (1 + |u(x)|)m ϕ1(x)n+p+Rdx+

∫
BR(0)

|x|−α|u(x)|q(x)+m+1ϕ1(x)n+p+Rdx

≤ µ2

∫
BR(0)

(1 + |u(x)|)m ϕ1(x)n+p+R
[
|∇u(x)|p(x)−1

] [
(n+ p+

R)(1 + |u(x)|)ϕ1(x)−1|∇ϕ1(x)|
]
dx

≤ µ2C(ε2)

∫
BR(0)

(n+ p+
R)p(x)(1 + |u(x)|)p(x)+mϕ1(x)n+p+R−p(x)|∇ϕ1(x)|p(x)dx

+ µ2ε2

∫
BR(0)

(1 + |u(x)|)mϕ1(x)n+p+R |∇u(x)|p(x)dx

Take ε2 = µ1
2µ2

, we have

µ1

2

∫
BR(0)

|∇u(x)|p(x)(1 + |u(x)|)mϕ1(x)n+p+Rdx+

∫
BR(0)

|x|−α|u(x)|q(x)+m+1ϕ1(x)n+p+Rdx

≤ C(µ1, µ2)

∫
BR(0)

(n+ p+
R)p(x) 1

ρp(x)
(1 + |u(x)|)p(x)+m ϕ1(x)n+p+R−p(x)dx.

(3.2)

Denote p−∗R =
Np−R
N−p−R

= kp−R. Since u(x) ∈W 1,p(x)(BR(0)\{0}), then u(x) ∈W 1,p−R (BR(0)\{0})

and φ(x) =
[
(1 + |u(x)|)t+p

+
R ϕ1(x)s+p

+
R

] 1

kp−
R ∈ W 1,p−R

0 (BR(0)), where t+p+
R > kp−R, s+p+

R > kp+
R.

As 1 < p−R < N , applying (2.2) to the function φ(x), we have∫
BR(0)

(1 + |u(x)|)t+p
+
R ϕ1(x)s+p

+
Rdx

≤ C(N, p−R)

(∫
BR(0)

|∇φ(x)|p
−
Rdx

)k
= C(N, p−R)

{∫
BR(0)

[(
t+ p+

R

kp−R

)p−R
(1 + |u(x)|)

t+p+
R

k
−p−R |∇u(x)|p

−
Rϕ

s+p+
R

k
1

+

(
s+ p+

R

kp−R

)p−R
(1 + |u(x)|)

t+p+
R

k ϕ
s+p+

R
k
−p−R

1 |∇ϕ1|p
−
R

]
dx

}k

≤ C(N, p−R)

(
t+ s+ p+

R

kp−R

)kp−R {∫
BR(0)

[
(1 + |u(x)|)

t+p+
R

k
−p−R |∇u(x)|p

−
Rϕ

s+p+
R

k
1

+

(
1

ρ

)p−R
(1 + |u(x)|)

t+p+
R

k ϕ
s+p+

R
k
−p−R

1

]
dx

}k

.

(3.3)
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Taking m =
t+p+R
k
− p−R, n+ p+

R =
s+p+R
k

in (3.2) and using Young’s inequality, we have∫
BR(0)

(1 + |u(x)|)
t+p+

R
k
−p−R |∇u(x)|p

−
Rϕ

s+p+
R

k
1 dx

≤
∫
BR(0)

(1 + |u(x)|)
t+p+

R
k
−p−R |∇u(x)|p(x)ϕ

s+p+
R

k
1 dx+

∫
BR(0)

(1 + |u(x)|)
t+p+

R
k
−p−Rϕ

s+p+
R

k
1 dx

≤ C(µ1, µ2)
(
s+ p+

R

)p+R 1

ρp
+
R

∫
BR(0)

(1 + |u(x)|)
t+p+

R
k
−p−R+p(x)ϕ

s+p+
R

k
−p(x)

1 dx.

(3.4)

From (3.3) and (3.4) we get∫
BR(0)

(1 + |u(x)|)t+p
+
R ϕ1(x)s+p

+
Rdx

≤ C(s+ p+
R)kp

+
R

(
t+ s+ p+

R

)kp−R 1

ρkp
+
R

[∫
BR(0)

(1 + |u(x)|)
t+p+

R
k
−p−R+p+R ϕ

s+p+
R

k
−p+R

1 dx

]k
,

(3.5)

where C = C(N,µ1, µ2, p
+
R, p

−
R).

Denote

Ii =

∫
BR(0)

(1 + |u(x)|)ti+p
+
Rϕ1(x)si+p

+
Rdx,

ti =(q−R + kp−R)ki − p+
R +

(
p+
R − p

−
R

)
N

p−R
,

si =

(
s0 + p+

R +
Np+

R

p−R

)
ki − p+

R −
Np+

R

p−R
,

where

s0 =
p+
R

(
q+
R + kp−R +

(p+R−p
−
R)N

p−R+1

)
q−R − p

+
R + 1

− p+
R + 1.

From (3.5), we get

Ii ≤ C(N,µ1, µ2, p
+
R, p

−
R)
(
ti + si + p+

R

)2kp+R 1

ρkp
+
R

Iki−1. (3.6)

Since

ti + si + p+
R ≤

(
q−R + kp−R

)
ki +

(
p+
R − p

−
R

)
N

p−R
+

(
s0 + p+

R +
Np+

R

p−R

)
ki − Np+

R

p−R

≤
(
q−R + kp−R + s0 + p+

R +
Np+

R

p−R

)
ki,
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iterate (3.6), then we have

Ii ≤ C

(
q−R + kp−R + s0 + p+

R +
Np+

R

p−R

)2kp+R

k2kip+R
1

ρkp
+
R

Iki−1

≤ C

(
q−R + kp−R + s0 + p+

R +
Np+

R

p−R

)2
i∑

j=1
kjp+R

k
2
i∑

j=1
(i+1−j)kjp+R

(
1

ρ

) i∑
j=1

kjp+R

Ik
i

0 ,

then ∫
BR(0)

(1 + |u(x)|)
(q−R+kp−R)ki+

(p+R−p
−
R)N

p−
R ϕ1(x)si+p

+
Rdx

 1

ki

≤ C

(
q−R + kp+

R + s0 + p+
R +

Np+
R

p−R

)2
i∑

j=1
kj−ip+R

k
2
i∑

j=1
(i+1−j)kj−ip+R

(
1

ρ

) i∑
j=1

kj−ip+R

I0,

(3.7)

where C = C(N,µ1, µ2, p
+
R, p

−
R).

Since[∫
BR(0)

|u(x)|q
−
Rk

i

ϕ1(x)si+p
+
Rdx

] 1

ki

≤
[∫

BR(0)

(1 + |u(x)|)q
−
Rk

i

ϕ1(x)si+p
+
Rdx

] 1

ki

≤

∫
BR(0)

(1 + |u(x)|)
(q−R+kp−R)ki+

(p+R−p
−
R)N

p−
R ϕ1(x)si+p

+
Rdx

 1

ki

,

(3.8)

combining (3.7) and (3.8), and passing to the limit as i→∞, we obtain

||u(x)||q
−
R

L∞( ρ2<|x|<
3ρ
4 )
≤‖ 1 + |u(x)| ‖q

−
R

L∞( ρ2<|x|<
3ρ
4 )

≤ C

(
1

ρ

) kp+
R

k−1

∫
BR(0)

(1 + |u(x)|)
q−R+kp−R+

(p+R−p
−
R)N

p−
R ϕ1(x)s0+p+Rdx

 , (3.9)

where C = C(N,µ1, µ2, p
+
R, p

−
R).

Taking m = kp−R +
(p+R−p

−
R)N

p−R
, n = s0 in (3.2), we have

∫
BR(0)

|x|−α|u(x)|
q(x)+kp−R+

(p+R−p
−
R)N

p−
R

+1
ϕ1(x)s0+p+Rdx

≤ C(N,µ1, µ2, p
+
R, p

−
R)

∫
BR(0)

1

ρp(x)
(1 + |u(x)|)

p(x)+kp−R+
(p+R−p

−
R)N

p−
R ϕ1(x)s0+p+R−p(x)dx,

(3.10)
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and further by (3.10), we get

∫
BR(0)

(1 + |u(x)|)
q(x)+kp−R+

(p+R−p
−
R)N

p−
R

+1
ϕ1(x)s0+p+Rdx

≤ C(N, p+
R, p

−
R, q

+
R)

∫
BR(0)

(
1 + |u(x)|

q(x)+kp−R+
(p+R−p

−
R)N

p−
R

+1)
ϕ
s0+p+R
1 dx

≤ C + C

∫
BR(0)

ρα−p
+
R (1 + |u(x)|)

p(x)+kp−R+
(p+R−p

−
R)N

p−
R ϕ

s0+p+R−p(x)
1 dx

≤ C + Cε3

∫
BR(0)

(1 + |u(x)|)
q(x)+kp−R+

(p+R−p
−
R)N

p−
R

+1
ϕ1(x)s0+p+Rdx+

C(ε3)

∫
BR(0)

ρ(α−p+R)

q(x)+kp−
R

+
(p+R−p

−
R)N

p−
R

+1

q(x)−p(x)+1 ϕ
s0+p+R−

p(x)

q(x)+kp−R+
(p+R−p

−
R)N

p−
R

+1


q(x)−p(x)+1

1 dx.

Take ε3 = 1
2C

, we have

∫
BR(0)

(1 + |u(x)|)
q(x)+kp−R+

(p+R−p
−
R)N

p−
R

+1
ϕ1(x)s0+p+Rdx

≤C

1 +

∫
BR(0)

ρ(α−p+R)
q(x)+kp−

R
+

(p+R−p
−
R)N

p−
R

+1

q(x)−p(x)+1 dx

 ,

where C = C(N,µ1, µ2, p
+
R, p

−
R, q

+
R , R).

From (3.9), we have

||u(x)||q
−
R

L∞( ρ2<|x|<
3ρ
4 )
≤ C

ρ− kp+Rk−1 + ρ−
kp+
R

k−1

∫
BR(0)

ρ(α−p+R)
q(x)+kp−

R
+

(p+R−p
−
R)N

p−
R

+1

q(x)−p(x)+1 dx

 . (3.11)

If p+
R ≤ α < N , we have

||u(x)||q
−
R

L∞( ρ2<|x|<
3ρ
4 )
≤ Cρ−

kp+
R

k−1 ,

and

|u(x)| ≤ C|x|
−

kp+
R

(k−1)q−
R , a.e.

where C = C
(
N,µ1, µ2, p

+
R, p

−
R, q

+
R , q

−
R , R

)
.
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If α < p+
R, we have

||u(x)||q
−
R

L∞( ρ2<|x|<
3ρ
4 )
≤ Cρ

−
(p+R−α)

q+R+kp−
R

+
(p+R−p

−
R)N

p−
R

+1


q−
R
−p+
R

+1
−
kp+
R

k−1
,

and

|u(x)| ≤ C |x|

−


(p+R−α)

q+R+kp−
R

+
(p+R−p

−
R)N

p−
R

+1


(q−R−p

+
R

+1)q−R
+

kp+
R

(k−1)q−
R


, a.e.

where C = C
(
N,µ1, µ2, p

+
R, p

−
R, q

+
R , q

−
R , R

)
.

The following is the main theorem in this paper.

Theorem 3.2 Let conditions (1.2) − (1.6), (2.1) be fulfilled. If u is a solution of equation
(1.1) in Ω \ {0}, then the singularity of u(x) at the point 0 is removable.

Proof. For 0 < r < R < min{dist(0, ∂Ω), δ0, 1}, we denote m(r) = sup{|u(x)| : r ≤ |x| ≤
R}. For sufficiently small r ≤ min

{
1
e2
, R2

}
, we define the function ψr(x) as follows:

ψr(x) ≡ 0 for |x| < r,

ψr(x) ≡ 1 for |x| >
√
r,

ψr(x) =
2

ln 1
r

ln
|x|
r

for r ≤ |x| ≤
√
r.

We take the following test function

ϕ(x) = ψγr (x)

[
ln

u

m(%)

]
+

, (3.12)

for any x ∈ Ω%, where 0 < % < R, Ω% = {x ∈ BR(0) : u(x) > m(%)}, γ = sup
x∈Ω

p(x)q(x)
q(x)−p(x)+1

is a

constant and ϕ(x) ≡ 0 for x /∈ Ω%.

For some 0 < % < R, let the domain Ω% be nonempty. Since ϕ(x) ∈ W
1,p(x)
0 (Ω\{0}) ∩

L∞(Ω\{0}), testing the equality (2.3) by ϕ, we have∫
Ω%

A(x, u,∇u)∇uψ
γ
r

u
+ g(x, u)ψγr (x) ln

u

m(%)
dx

+

∫
Ω%

A(x, u,∇u)γψγ−1
r (x)∇ψr ln

u

m(%)
dx = 0.
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By virtue of the conditions (1.2)− (1.4), we have∫
Ω%

µ1
|∇u|p(x)

u
ψγr (x)dx+

∫
Ω%

|x|−αuq(x)ψγr (x) ln
u

m(%)
dx

≤ µ2γ

∫
Ω%

|∇u|p(x)−1|∇ψr|ψγ−1
r (x) ln

u

m(%)
dx.

By Young’s inequality,

µ2γ

∫
Ω%

|∇u|p(x)−1|∇ψr|ψγ−1
r (x) ln

u

m(%)
dx

≤ C(ε4)

∫
Ω%

up(x)−1ψγ−p(x)
r |∇ψr|p(x)

(
ln

u

m(%)

)p(x)

dx+ µ2γε4

∫
Ω%

ψγru
−1|∇u|p(x)dx,

take ε4 = µ1
2µ2γ

, then

µ1

2

∫
Ω%

|∇u|p(x)

u
ψγr (x)dx+

∫
Ω%

|x|−αuq(x)ψγr (x) ln
u

m(ρ)
dx

≤ C(µ1, µ2, γ)

∫
Ω%

up(x)−1ψγ−p(x)
r |∇ψr|p(x)

(
ln

u

m(ρ)

)p(x)

dx.

Further, ∫
Ω%

up(x)−1ψγ−p(x)
r |∇ψr|p(x)

(
ln

u

m(ρ)

)p(x)

dx

≤ C(ε5)

∫
Ω%

|x|
αq(x)

q(x)−p(x)+1
−α
(

ln
u

m(%)

)1+
(p(x)−1)q(x)
q(x)−p(x)+1

|∇ψr|
p(x)q(x)

q(x)−p(x)+1 dx

+ ε5

∫
Ω%

|x|−α ln
u

m(%)
uq(x)ψ

(γ−p(x))q(x)
p(x)−1

r dx.

Take ε5 = 1
2C(µ1,µ2,γ)

. Since (γ−p(x))q(x)
p(x)−1

> γ, ψr(x) ≤ 1, we have

µ1

2

∫
Ω%

|∇u|p(x)

u
ψγr (x)dx+

1

2

∫
Ω%

|x|−αuq(x)ψγr (x) ln
u

m(%)
dx

≤ C(µ1, µ2, γ)

∫
Ω%∩{x:r≤|x|≤

√
r}
|x|

αq(x)
q(x)−p(x)+1

−α
(

ln
u

m(%)

)1+
(p(x)−1)q(x)
q(x)−p(x)+1

|∇ψr|
p(x)q(x)

q(x)−p(x)+1 dx.

(3.13)
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By Lemma 2.1, we get 0 < 1 +
(p+R−1)q+R
q−R−p

+
R+1

<∞. Denote λ = sup
x∈Ω

(
(p(x)−α)q(x)
q(x)−p(x)+1

+ α
)

, and from

Theorem 3.1 and (3.13), we have

µ1

2

∫
Ω%

|∇u|p(x)

u
ψγr (x)dx+

1

2

∫
Ω%

|x|−αuq(x)ψγr (x) ln
u

m(%)
dx

≤ C

∫
Ω%∩{x:r≤|x|≤

√
r}
|x|

αq(x)
q(x)−p(x)+1

−α (ln |x|−Q + C
)1+

(p(x)−1)q(x)
q(x)−p(x)+1

(
2

|x| ln 1
r

) p(x)q(x)
q(x)−p(x)+1

dx

≤ C

(
ln

1

r

)− q−
R
p−
R

q+
R
−p−
R

+1
∫

Ω%∩{x:r≤|x|≤
√
r}
|x|

αq(x)
q(x)−p(x)+1

−α

[(
ln

1

|x|

)1+
(p(x)−1)q(x)
q(x)−p(x)+1

+ 1

](
1

|x|

) p(x)q(x)
q(x)−p(x)+1

dx

≤ C

(
ln

1

r

)− q−
R
p−
R

q+
R
−p−
R

+1
∫

Ωρ∩{x:r≤|x|≤
√
r}

(
ln

1

|x|

)1+
(p+
R
−1)q+

R

q−
R
−p+
R

+1

(
1

|x|

)λ
dx

≤ C

(
ln

1

r

)− q−
R
p−
R

q+
R
−p−
R

+1
∫ √r
r

(
1

t

)λ(
ln

1

t

)1+
(p+
R
−1)q+

R

q−
R
−p+
R

+1

tN−1dt,

where C = C
(
N,µ1, µ2, γ, p

+
R, p

−
R, q

−
R , q

+
R , R

)
.

Further, by (1.6), we get λ < N , then

(
ln

1

r

)− q−
R
p−
R

q+
R
−p−
R

+1
∫ √r
r

(
1

t

)λ(
ln

1

t

)1+
(p+R−1)q+R
q−
R
−p+
R

+1

tN−1dt

≤
(

ln
1

r

)− q−
R
p−
R

q+
R
−p−
R

+1

(
ln

1

r

)1+
(p+R−1)q+R
q−
R
−p+
R

+1
∫ √r
r

tN−1−λdt

=

(
ln

1

r

)− q−
R
p−
R

q+
R
−p−
R

+1

(
ln

1

r

)1+
(p+R−1)q+R
q−
R
−p+
R

+1 1

N − λ
r

1
2

(N−λ)
(

1− r
1
2

(N−λ)
)

→ 0,

as r → 0. Therefore, we obtain

lim
r→0

µ1

2

∫
Ω%

|∇u|p(x)

u
ψγr (x)dx+

1

2

∫
Ω%

|x|−α uq(x)ψγr (x) ln
u

m(%)
dx ≤ 0,

then

µ1

∫
Ω%

|∇u|p(x)

u
dx+

∫
Ω%

|x|−αuq(x) ln
u

m(%)
dx = 0.

Hence u(x) = m(%) almost everywhere in Ω% and the Lebesgue measure of Ω% equals to
zero. Considering further the function −u(x) instead of u(x), we obtain the boundedness of
−u(x) in a neighborhood of the point 0. Thus we have proved that u ∈ L∞(Ω).
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Next, we take the test function
ϕ̃ = ψp

+

u,

where ψ ≡ 1 in B2ρ(0)\Bρ(0), ψ ≡ 0 outside B 5ρ
2

(0)\B ρ
2
(0), 0 ≤ ψ(x) ≤ 1, |∇ψ| ≤ C

ρ
and

0 < ρ ≤ 1. Testing the equality (2.3) by ϕ̃, we have∫
Ω

A(x, u,∇u)
(
p+ψp

+−1u∇ψ + ψp
+∇u

)
+ g(x, u)ψp

+

udx = 0.

By virtue of the conditions (1.2)− (1.5), we have∫
B 5ρ

2
(0)

µ1|∇u|p(x)ψp
+

+ |x|−α|u|q(x)+1ψp
+

dx

≤ p+µ2

∫
B 5ρ

2
(0)

|∇u|p(x)−1ψp
+−1|∇ψ||u|dx

= p+µ2

∫
B 5ρ

2
(0)

[
|∇ψ||u|ψp

+−1− p+

p
′
(x)

] [
|∇u|p(x)−1ψ

p+

p
′
(x)

]
dx

≤ C(µ2, p
+, ε6)

∫
B 5ρ

2
(0)

|∇ψ|p(x)|u|p(x)ψp
+−p(x)dx+ p+µ2ε6

∫
B 5ρ

2
(0)

|∇u|p(x)ψp
+

dx.

Take ε6 = µ1
2p+µ2

, we have

∫
B 5ρ

2
(0)

|∇u|p(x)ψp
+

dx ≤ C(µ1, µ2, p
+)

∫
B 5ρ

2
(0)

|∇ψ|p(x)|u|p(x)ψp
+−p(x)dx

≤ C
1

ρp+
max

{
||u||p+∞ , ||u||p

−

∞

} ∣∣∣B 5ρ
2

(0)
∣∣∣

≤ C
1

ρp+
ωn

(
5ρ

2

)N
= C(µ1, µ2, p

+)ρN−p
+

,

where ωn is the volume of the unit ball, |B 5ρ
2

(0)| is the volume of the ball B 5ρ
2

(0).

Further, ∫
B2ρ(0)\Bρ(0)

|∇u|p(x)dx ≤ C(µ1, µ2, p
+)ρN−p

+

, (3.14)
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then we obtain ∫
Bρ(0)

|∇u|p(x)dx =
∞∑
j=1

∫
B

21−jρ(0)\B
2−jρ(0)

|∇u|p(x)dx

≤ C

∞∑
j=1

(
2−jρ

)N−p+
≤ C(µ1, µ2, p

+)ρN−p
+

→ 0,

as ρ→ 0. So |∇u| ∈ Lp(x)(Ω).
Thus, we have proved that u ∈ W 1,p(x)(Ω) ∩ L∞(Ω).
Next, we will show that u(x) is a solution of equation (1.1) in the domain Ω. Pick ηρ ∈

C∞0 (RN) be the cutoff function for the ball Bρ(0), ηρ ≡ 1 in Bρ(0), ηρ ≡ 0 outside the ball

B2ρ(0), |∇ηρ| ≤ C
ρ

and 0 < ρ ≤ 1. Let ϕ ∈ W 1,p(x)
0 (Ω) ∩ L∞(Ω). Testing the equation (2.3) by

the test function (1− ηρ)ϕ, we have∫
Ω

A(x, u,∇u)∇[(1− ηρ)ϕ]dx+

∫
Ω

g(x, u)(1− ηρ)ϕdx = 0,

that is,∫
Ω

A(x, u,∇u)(1− ηρ)∇ϕdx−
∫

Ω

A(x, u,∇u)ϕ∇ηρdx+

∫
Ω

g(x, u)(1− ηρ)ϕdx = 0.

Indeed,

|A(x, u,∇u)(1− ηρ)∇ϕ| ≤ µ2|∇u|p(x)−1|∇ϕ|

≤ µ2

(
p(x)− 1

p(x)
|∇u|p(x) +

1

p(x)
|∇ϕ|p(x)

)
∈ L1(Ω),

therefore, by Lebesgue’s Dominated Convergence Theorem, we have

lim
ρ→0

∫
Ω

A(x, u,∇u)(1− ηρ)∇ϕdx =

∫
Ω

A(x, u,∇u)∇ϕdx.

In the same way,

lim
ρ→0

∫
Ω

g(x, u)(1− ηρ)ϕdx =

∫
Ω

g(x, u)ϕdx.
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Meanwhile, by (3.14), we have∣∣∣∣∫
Ω

A(x, u,∇u)ϕ∇ηρdx
∣∣∣∣

≤ Cµ2

ρ

∫
B2ρ(0)\Bρ(0)

|∇u|p(x)−1dx

≤ C(µ2)

ρ
‖ |∇u|p(x)−1 ‖

L
p(x)
p(x)−1 (B2ρ(0)\Bρ(0))

‖ 1 ‖Lp(x)(B2ρ(0)\Bρ(0))

≤ C(µ2)

ρ

[∫
B2ρ(0)\Bρ(0)

|∇u|p(x)dx

] p−−1

p+

· |B2ρ(0) \Bρ(0)|
1
p+

≤ C(µ1, µ2, p
+)

ρ
ρ

(p−−1)(N−p+)
p+

(
ρN
) 1
p+

= C(µ1, µ2, p
+)ρ

p−(N−p+)
p+

→ 0,

as ρ→ 0.
So we have obtained that equality (2.3) is fulfilled for any test function.
Therefore, the isolated singular point 0 is removable for solutions of equation (1.1).
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